Extensions 1→N→G→Q→1 with N=Dic19 and Q=C22

Direct product G=N×Q with N=Dic19 and Q=C22
dρLabelID
C22×Dic19304C2^2xDic19304,35

Semidirect products G=N:Q with N=Dic19 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic191C22 = D4×D19φ: C22/C2C2 ⊆ Out Dic19764+Dic19:1C2^2304,31
Dic192C22 = C2×C19⋊D4φ: C22/C2C2 ⊆ Out Dic19152Dic19:2C2^2304,36
Dic193C22 = C2×C4×D19φ: trivial image152Dic19:3C2^2304,28

Non-split extensions G=N.Q with N=Dic19 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic19.1C22 = C2×Dic38φ: C22/C2C2 ⊆ Out Dic19304Dic19.1C2^2304,27
Dic19.2C22 = D765C2φ: C22/C2C2 ⊆ Out Dic191522Dic19.2C2^2304,30
Dic19.3C22 = Q8×D19φ: C22/C2C2 ⊆ Out Dic191524-Dic19.3C2^2304,33
Dic19.4C22 = D42D19φ: trivial image1524-Dic19.4C2^2304,32
Dic19.5C22 = D76⋊C2φ: trivial image1524+Dic19.5C2^2304,34

׿
×
𝔽